对于进程,除了0号进程,其他的所有进程(无论是内核线程还是普通线程)都是通过fork出来的,而创建进程是在内核中完成的
- 要么在内核空间直接创建出所谓的内核线程
- 要么是应用空间通过fork/clone/vfork这样的系统调用进入内核,再内核空间创建
同上一章,我们完成的分析了fork的整个过程,fork分为两部分,一部分是初始化进程控制块,另外一部分是进程管理部分。本章的重点学习以下内容
- 子进程如何构建自己的内存管理
- 父子进程如何共享地址空间
- 写时复制如何发生
1. 写时复制技术
在传统的unix操作系统中,创建新建成时就会复制父进程所拥有的所有资源,这样进程的创建就变的很低效。其原因如下
- 每次创建子进程时,都要把父进程的进程地址空间中的内容复制到子进程,但是子进程甚至不用父进程的资源
- 子进程调用execve()系统调用之后,可能和父进程分道扬镳
所以现在的操作系统都采用写时复制(COW,Copy on Write)技术进行优化,其原理如下
- 父进程在创建子进程的时,不需要复制进程地址空间的内容到子进程,只需要复制父进程的进程地址空间的页表到子进程,并将页面属性修改为只读,这样父、子进程就共享相同的物理内存。
- 当父、子进程中有一方需要修改某个物理页面的内容,触发写保护的缺页异常,然后才复制共享页面的内容,从而让父、子进程拥有各自的副本
也就是说,进程地址空间以只读的方式共享,当需要写入时,才发生复制
在采用写时复制技术的Linux内核中,用fork函数创建一个新进程的开销就变得很小,免去了复制父进程整个进程地址空间导致的巨大开销,现在只需要复制父进程页表就可以了。
2. copy的内存管理
2.1 内存初始化
static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
{
struct mm_struct *mm, *oldmm;
int retval;
tsk->min_flt = tsk->maj_flt = 0;
tsk->nvcsw = tsk->nivcsw = 0;
#ifdef CONFIG_DETECT_HUNG_TASK
tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
#endif
//初始化task的mm_struct和VMA为空
tsk->mm = NULL;
tsk->active_mm = NULL;
/*
* Are we cloning a kernel thread?
*
* We need to steal a active VM for that..
*/
oldmm = current->mm; //current宏表明当前进程,即父进程
if (!oldmm) //如果父进程使一个没有进程地址空间的内核线程,不需要为子进程做内存复制,直接退出
return 0;
/* initialize the new vmacache entries */
vmacache_flush(tsk);
//如果调用vfork创建子进程,那么CLONE_VM标志位就会被置位,因此子进程进程的mm直接指向父进程的内存描述符
if (clone_flags & CLONE_VM) {
atomic_inc(&oldmm->mm_users);
mm = oldmm;
goto good_mm;
}
//如果CLONE_VM没有置位,那么调用dump_mm来复制父进程的进程地址空间
retval = -ENOMEM;
mm = dup_mm(tsk);
if (!mm)
goto fail_nomem;
good_mm:
tsk->mm = mm;
tsk->active_mm = mm;
return 0;
fail_nomem:
return retval;
}
该函数比较简单,其主要做了以下几件事情
- 如果使内核线程,也就是当前进程地址空间为空,就不需要为子进程做内存复制,直接退出
- 在创建的时候,会根据fork参数的clone_flags来决定,如果是CLONE_VM标志位就会被置位,子进程的mm指针指向父进程的内存描述符的mm即可
- 如果CLONE_VM没有被置为,那么调用dump_mm来复制父进程的进程地址空间
dum_mm函数实现也在fork.c文件中,实现也比较简单
static struct mm_struct *dup_mm(struct task_struct *tsk)
{
struct mm_struct *mm, *oldmm = current->mm;
int err;
//1.通过allocate_mm分配属于进程自己的mm_struct结构来管理自己的地址空间
mm = allocate_mm();
if (!mm)
goto fail_nomem;
memcpy(mm, oldmm, sizeof(*mm));
//2.通过mm_init来初始化mm_struct中相关成员
if (!mm_init(mm, tsk, mm->user_ns))
goto fail_nomem;
//3.通过dup_mmap来复制父进程的地址空间
err = dup_mmap(mm, oldmm);
if (err)
goto free_pt;
mm->hiwater_rss = get_mm_rss(mm);
mm->hiwater_vm = mm->total_vm;
if (mm->binfmt && !try_module_get(mm->binfmt->module))
goto free_pt;
return mm;
free_pt:
/* don't put binfmt in mmput, we haven't got module yet */
mm->binfmt = NULL;
mmput(mm);
fail_nomem:
return NULL;
}
分配mm_struct结构就不需要赘述,我们先看下mm_init,其函数如下
static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
struct user_namespace *user_ns)
{
// 1. 初始化mm
mm->mmap = NULL;
mm->mm_rb = RB_ROOT;
mm->vmacache_seqnum = 0;
atomic_set(&mm->mm_users, 1);
atomic_set(&mm->mm_count, 1);
init_rwsem(&mm->mmap_sem);
INIT_LIST_HEAD(&mm->mmlist);
mm->core_state = NULL;
atomic_long_set(&mm->nr_ptes, 0);
mm_nr_pmds_init(mm);
mm->map_count = 0;
mm->locked_vm = 0;
mm->pinned_vm = 0;
memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
spin_lock_init(&mm->page_table_lock);
mm_init_cpumask(mm);
mm_init_aio(mm);
mm_init_owner(mm, p);
RCU_INIT_POINTER(mm->exe_file, NULL);
mmu_notifier_mm_init(mm);
clear_tlb_flush_pending(mm);
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
mm->pmd_huge_pte = NULL;
#endif
mm_init_uprobes_state(mm);
if (current->mm) {
mm->flags = current->mm->flags & MMF_INIT_MASK;
mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
} else {
mm->flags = default_dump_filter;
mm->def_flags = 0;
}
//2,分配一个进程私有的page页,当需要va->pa转换的时候,查找属于当前进程的pgd表项
if (mm_alloc_pgd(mm))
goto fail_nopgd;
//3. 设置了mm->context.id为0,当进程调度的时候进行地址空间切换,如果mm->context.id为0就为进程分配新的ASID
if (init_new_context(p, mm))
goto fail_nocontext;
mm->user_ns = get_user_ns(user_ns);
return mm;
}
每个进程在创建的时都会分配一级页表,并且内存描述符中一个pdg的成员指向这个进程的一级页表的基地址。当进程初始化完成后,需要转换,进程切换的时候,会使用tsk->mm->pgd指向的页表作为base来进程页表中遍历,对于ARM64架构来说,他们由两个页表的基地址寄存器ttbr0_el1和ttbr1_el0。
讲完mm_init相关的内容,接着返回dum_mmap,dup_mmap函数参数中,mm表示新进程的mm_struct数据结构,oldmm表示父进程的mm_struct数据结构。该函数的主要作用是遍历父进程中所有的VMA,然后复制父进程VMA中对应的PTE到子进程的VMA对应的PTE中。注意,只是复制PTE,并不是复制VMA对应页面的内容。
static __latent_entropy int dup_mmap(struct mm_struct *mm,
struct mm_struct *oldmm)
{
down_write_killable(&oldmm->mmap_sem);
for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
INIT_LIST_HEAD(&tmp->anon_vma_chain);
retval = vma_dup_policy(mpnt, tmp);
if (retval)
goto fail_nomem_policy;
tmp->vm_mm = mm;
if (anon_vma_fork(tmp, mpnt))
goto fail_nomem_anon_vma_fork;
__vma_link_rb(mm, tmp, rb_link, rb_parent);
rb_link = &tmp->vm_rb.rb_right;
rb_parent = &tmp->vm_rb;
mm->map_count++;
retval = copy_page_range(mm, oldmm, mpnt);
}
up_write(&mm->mmap_sem);
}
- 由于后续会修改父进程的进程地址空间,因此要给父进程加上一个写类型的信号量
- 通过fork循环遍历父进程中所有的VMA,进程中所有的VMA都会添加到内存描述符的mmap成员指向的链表中
- vma_dup_policy为子进程创建一个VMA,子进程VMA中有一个链表aon_vma_chain,用于存放aon_vma_chain数据结构,用在RMAP机制中
- anon_vma_fork函数创建属于子进程的aon_vma数据结构,并使用aon_vma_chain来实现父子进程VMA的链接
- __vma_link_rb把刚才创建的VMA插入子进程的mm
- copy_page_range复制父进程VMA的页表到子进程页表中
对于每一个vma都调用copy_page_range,此函数会遍历vma中每一个虚拟页,然后 拷贝父进程的页表到子进程 (虚拟页对应的页表存在的话),这里主要是页表遍历的代码,从pgd->copy_page_range->copy_pud_range->copy_pmd_range->copy_pte_range
static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
unsigned long addr, unsigned long end)
{
do {
/*
* We are holding two locks at this point - either of them
* could generate latencies in another task on another CPU.
*/
if (progress >= 32) {
progress = 0;
if (need_resched() ||
spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
break;
}
if (pte_none(*src_pte)) {
progress++;
continue;
}
entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
vma, addr, rss);
if (entry.val)
break;
progress += 8;
}
}
我们看的在copy_present_pte函数中,对父子进程的写保护处理,也就是当发现父进程的vma的属性为私有可写的时候,就 设置父进程和子进程的相关的页表项为只读 。这点很重要,因为这样既保证了父子进程的地址空间的共享(读的时候),又保证了他们有独立的地址空间(写的时候)。
2.2 写时复制发生
ork创建完子进程后,通过复制父进程的页表来共享父进程的地址空间,我们知道对于私有的可写的页,设置了父子进程的相应页表为为只读,这样就为写实复制创造了页表层面上的条件。当父进程或者子进程,写写保护的页时触发访问权限异常:
... //处理器架构处理
do_page_fault // arch/arm64/mm/fault.c
-> __do_page_fault
-> handle_mm_fault
-> handle_pte_fault //mm/memory.c
-> if (vmf->flags & FAULT_FLAG_WRITE) {
if (!pte_write(entry))
return do_wp_page(vmf);
entry = pte_mkdirty(entry);
}
这一章的详细内容,请参考linux内存管理笔记(三十六)----写时复制
3. 总结
fork的时候会创建内核管理初始化,例如mm_struct, vma等用于描述进程自己的地址空间,然后会创建出进程私有的pgd页,用于页表遍历时填充页表,然后还会拷贝父进程所有的vma,然后就是对于每个vma做页表的拷贝和写保护操作。后面的pud pmd的其他各级页表的创建和填充工作由缺页异常处理来完成。
Java 面试宝典是大明哥全力打造的 Java 精品面试题,它是一份靠谱、强大、详细、经典的 Java 后端面试宝典。它不仅仅只是一道道面试题,而是一套完整的 Java 知识体系,一套你 Java 知识点的扫盲贴。
它的内容包括:
- 大厂真题:Java 面试宝典里面的题目都是最近几年的高频的大厂面试真题。
- 原创内容:Java 面试宝典内容全部都是大明哥原创,内容全面且通俗易懂,回答部分可以直接作为面试回答内容。
- 持续更新:一次购买,永久有效。大明哥会持续更新 3+ 年,累计更新 1000+,宝典会不断迭代更新,保证最新、最全面。
- 覆盖全面:本宝典累计更新 1000+,从 Java 入门到 Java 架构的高频面试题,实现 360° 全覆盖。
- 不止面试:内容包含面试题解析、内容详解、知识扩展,它不仅仅只是一份面试题,更是一套完整的 Java 知识体系。
- 宝典详情:https://www.yuque.com/chenssy/sike-java/xvlo920axlp7sf4k
- 宝典总览:https://www.yuque.com/chenssy/sike-java/yogsehzntzgp4ly1
- 宝典进展:https://www.yuque.com/chenssy/sike-java/en9ned7loo47z5aw
目前 Java 面试宝典累计更新 400+ 道,总字数 42w+。大明哥还在持续更新中,下图是大明哥在 2024-12 月份的更新情况:
想了解详情的小伙伴,扫描下面二维码加大明哥微信【daming091】咨询
同时,大明哥也整理一套目前市面最常见的热点面试题。微信搜[大明哥聊 Java]或扫描下方二维码关注大明哥的原创公众号[大明哥聊 Java] ,回复【面试题】 即可免费领取。