2023-09-22  阅读(7)
原文作者:李林超 原文地址: https://www.lilinchao.com/archives/589.html

一、线索二叉树应用案例

应用案例说明:将下面的二叉树,进行中序线索二叉树,中序遍历的数列为}{8,3,10,1,14,6}

202309222131276021.png

思路分析:中序遍历的结果:{8,3,10,1,14,6}

202309222131280872.png

说明:当线索化二叉树后,Node节点的属性left和right,有如下情况:

(1)left:指向的是左子树,也可能是指向的前驱节点。比如①节点left指向的左子树,而⑩节点的left指向的就是前驱节点。

(2)right指向的是右子树,也可能是指向后继结点,比如①节点right指向的是右子树,而⑩节点的right指向的是后继节点。

代码实现

    public class ThreadedBinaryTreeDemo {
    
        public static void main(String[] args) {
            //测试一把中序线索二叉树的功能
            HeroNode root = new HeroNode(1, "tom");
            HeroNode node2 = new HeroNode(3, "jack");
            HeroNode node3 = new HeroNode(6, "smith");
            HeroNode node4 = new HeroNode(8, "mary");
            HeroNode node5 = new HeroNode(10, "king");
            HeroNode node6 = new HeroNode(14, "dim");
    
            //二叉树,后面我们要递归创建, 现在简单处理使用手动创建
            root.setLeft(node2);
            root.setRight(node3);
            node2.setLeft(node4);
            node2.setRight(node5);
            node3.setLeft(node6);
    
            //测试中序线索化
            ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
            threadedBinaryTree.setRoot(root);
            threadedBinaryTree.threadedNodes();
    
            //测试: 以10号节点测试
            HeroNode leftNode = node5.getLeft();
            HeroNode rightNode = node5.getRight();
            System.out.println("10号结点的前驱结点是 ="  + leftNode); //3
            System.out.println("10号结点的后继结点是="  + rightNode); //1
    
            //当线索化二叉树后,能在使用原来的遍历方法
            //threadedBinaryTree.infixOrder();
            System.out.println("使用线索化的方式遍历 线索化二叉树");
            threadedBinaryTree.threadedList(); // 8, 3, 10, 1, 14, 6
    
        }
    
    }
    
    
    
    
    //定义ThreadedBinaryTree 实现了线索化功能的二叉树
    class ThreadedBinaryTree {
        private HeroNode root;
    
        //为了实现线索化,需要创建要给指向当前结点的前驱结点的指针
        //在递归进行线索化时,pre 总是保留前一个结点
        private HeroNode pre = null;
    
        public void setRoot(HeroNode root) {
            this.root = root;
        }
    
        //重载一把threadedNodes方法
        public void threadedNodes() {
            this.threadedNodes(root);
        }
    
        //遍历线索化二叉树的方法
        public void threadedList() {
            //定义一个变量,存储当前遍历的结点,从root开始
            HeroNode node = root;
            while(node != null) {
                //循环的找到leftType == 1的结点,第一个找到就是8结点
                //后面随着遍历而变化,因为当leftType==1时,说明该结点是按照线索化
                //处理后的有效结点
                while(node.getLeftType() == 0) {
                    node = node.getLeft();
                }
    
                //打印当前这个结点
                System.out.println(node);
                //如果当前结点的右指针指向的是后继结点,就一直输出
                while(node.getRightType() == 1) {
                    //获取到当前结点的后继结点
                    node = node.getRight();
                    System.out.println(node);
                }
                //替换这个遍历的结点
                node = node.getRight();
    
            }
        }
    
        //编写对二叉树进行中序线索化的方法
        /**
         *
         * @param node 就是当前需要线索化的结点
         */
        public void threadedNodes(HeroNode node) {
    
            //如果node==null, 不能线索化
            if(node == null) {
                return;
            }
    
            //(一)先线索化左子树
            threadedNodes(node.getLeft());
            //(二)线索化当前结点[有难度]
    
            //处理当前结点的前驱结点
            //以8结点来理解
            //8结点的.left = null , 8结点的.leftType = 1
            if(node.getLeft() == null) {
                //让当前结点的左指针指向前驱结点
                node.setLeft(pre);
                //修改当前结点的左指针的类型,指向前驱结点
                node.setLeftType(1);
            }
    
            //处理后继结点
            if (pre != null && pre.getRight() == null) {
                //让前驱结点的右指针指向当前结点
                pre.setRight(node);
                //修改前驱结点的右指针类型
                pre.setRightType(1);
            }
            //!!! 每处理一个结点后,让当前结点是下一个结点的前驱结点
            pre = node;
    
            //(三)在线索化右子树
            threadedNodes(node.getRight());
    
    
        }
    
        //删除结点
        public void delNode(int no) {
            if(root != null) {
                //如果只有一个root结点, 这里立即判断root是不是就是要删除结点
                if(root.getNo() == no) {
                    root = null;
                } else {
                    //递归删除
                    root.delNode(no);
                }
            }else{
                System.out.println("空树,不能删除~");
            }
        }
        //前序遍历
        public void preOrder() {
            if(this.root != null) {
                this.root.preOrder();
            }else {
                System.out.println("二叉树为空,无法遍历");
            }
        }
    
        //中序遍历
        public void infixOrder() {
            if(this.root != null) {
                this.root.infixOrder();
            }else {
                System.out.println("二叉树为空,无法遍历");
            }
        }
        //后序遍历
        public void postOrder() {
            if(this.root != null) {
                this.root.postOrder();
            }else {
                System.out.println("二叉树为空,无法遍历");
            }
        }
    
        //前序遍历
        public HeroNode preOrderSearch(int no) {
            if(root != null) {
                return root.preOrderSearch(no);
            } else {
                return null;
            }
        }
        //中序遍历
        public HeroNode infixOrderSearch(int no) {
            if(root != null) {
                return root.infixOrderSearch(no);
            }else {
                return null;
            }
        }
        //后序遍历
        public HeroNode postOrderSearch(int no) {
            if(root != null) {
                return this.root.postOrderSearch(no);
            }else {
                return null;
            }
        }
    }
    
    //先创建HeroNode 结点
    class HeroNode {
        private int no;
        private String name;
        private HeroNode left; //默认null
        private HeroNode right; //默认null
        //说明
        //1. 如果leftType == 0 表示指向的是左子树, 如果 1 则表示指向前驱结点
        //2. 如果rightType == 0 表示指向是右子树, 如果 1表示指向后继结点
        private int leftType;
        private int rightType;
    
    
    
        public int getLeftType() {
            return leftType;
        }
        public void setLeftType(int leftType) {
            this.leftType = leftType;
        }
        public int getRightType() {
            return rightType;
        }
        public void setRightType(int rightType) {
            this.rightType = rightType;
        }
        public HeroNode(int no, String name) {
            this.no = no;
            this.name = name;
        }
        public int getNo() {
            return no;
        }
        public void setNo(int no) {
            this.no = no;
        }
        public String getName() {
            return name;
        }
        public void setName(String name) {
            this.name = name;
        }
        public HeroNode getLeft() {
            return left;
        }
        public void setLeft(HeroNode left) {
            this.left = left;
        }
        public HeroNode getRight() {
            return right;
        }
        public void setRight(HeroNode right) {
            this.right = right;
        }
        @Override
        public String toString() {
            return "HeroNode [no=" + no + ", name=" + name + "]";
        }
    
        //递归删除结点
        //1.如果删除的节点是叶子节点,则删除该节点
        //2.如果删除的节点是非叶子节点,则删除该子树
        public void delNode(int no) {
    
            //思路
    		/*
    		 * 	1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点.
    			2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
    			3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
    			4. 如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
    			5.  如果第4步也没有删除结点,则应当向右子树进行递归删除.
    
    		 */
            //2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
            if(this.left != null && this.left.no == no) {
                this.left = null;
                return;
            }
            //3.如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
            if(this.right != null && this.right.no == no) {
                this.right = null;
                return;
            }
            //4.我们就需要向左子树进行递归删除
            if(this.left != null) {
                this.left.delNode(no);
            }
            //5.则应当向右子树进行递归删除
            if(this.right != null) {
                this.right.delNode(no);
            }
        }
    
        //编写前序遍历的方法
        public void preOrder() {
            System.out.println(this); //先输出父结点
            //递归向左子树前序遍历
            if(this.left != null) {
                this.left.preOrder();
            }
            //递归向右子树前序遍历
            if(this.right != null) {
                this.right.preOrder();
            }
        }
        //中序遍历
        public void infixOrder() {
    
            //递归向左子树中序遍历
            if(this.left != null) {
                this.left.infixOrder();
            }
            //输出父结点
            System.out.println(this);
            //递归向右子树中序遍历
            if(this.right != null) {
                this.right.infixOrder();
            }
        }
        //后序遍历
        public void postOrder() {
            if(this.left != null) {
                this.left.postOrder();
            }
            if(this.right != null) {
                this.right.postOrder();
            }
            System.out.println(this);
        }
    
        //前序遍历查找
        /**
         *
         * @param no 查找no
         * @return 如果找到就返回该Node ,如果没有找到返回 null
         */
        public HeroNode preOrderSearch(int no) {
            System.out.println("进入前序遍历");
            //比较当前结点是不是
            if(this.no == no) {
                return this;
            }
            //1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
            //2.如果左递归前序查找,找到结点,则返回
            HeroNode resNode = null;
            if(this.left != null) {
                resNode = this.left.preOrderSearch(no);
            }
            if(resNode != null) {//说明我们左子树找到
                return resNode;
            }
            //1.左递归前序查找,找到结点,则返回,否继续判断,
            //2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
            if(this.right != null) {
                resNode = this.right.preOrderSearch(no);
            }
            return resNode;
        }
    
        //中序遍历查找
        public HeroNode infixOrderSearch(int no) {
            //判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
            HeroNode resNode = null;
            if(this.left != null) {
                resNode = this.left.infixOrderSearch(no);
            }
            if(resNode != null) {
                return resNode;
            }
            System.out.println("进入中序查找");
            //如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点
            if(this.no == no) {
                return this;
            }
            //否则继续进行右递归的中序查找
            if(this.right != null) {
                resNode = this.right.infixOrderSearch(no);
            }
            return resNode;
    
        }
    
        //后序遍历查找
        public HeroNode postOrderSearch(int no) {
    
            //判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
            HeroNode resNode = null;
            if(this.left != null) {
                resNode = this.left.postOrderSearch(no);
            }
            if(resNode != null) {//说明在左子树找到
                return resNode;
            }
    
            //如果左子树没有找到,则向右子树递归进行后序遍历查找
            if(this.right != null) {
                resNode = this.right.postOrderSearch(no);
            }
            if(resNode != null) {
                return resNode;
            }
            System.out.println("进入后序查找");
            //如果左右子树都没有找到,就比较当前结点是不是
            if(this.no == no) {
                return this;
            }
            return resNode;
        }
    
    }

运行结果

    10号结点的前驱结点是 =HeroNode [no=3, name=jack]
    10号结点的后继结点是=HeroNode [no=1, name=tom]
    使用线索化的方式遍历 线索化二叉树
    HeroNode [no=8, name=mary]
    HeroNode [no=3, name=jack]
    HeroNode [no=10, name=king]
    HeroNode [no=1, name=tom]
    HeroNode [no=14, name=dim]
    HeroNode [no=6, name=smith]

Java 面试宝典是大明哥全力打造的 Java 精品面试题,它是一份靠谱、强大、详细、经典的 Java 后端面试宝典。它不仅仅只是一道道面试题,而是一套完整的 Java 知识体系,一套你 Java 知识点的扫盲贴。

它的内容包括:

  • 大厂真题:Java 面试宝典里面的题目都是最近几年的高频的大厂面试真题。
  • 原创内容:Java 面试宝典内容全部都是大明哥原创,内容全面且通俗易懂,回答部分可以直接作为面试回答内容。
  • 持续更新:一次购买,永久有效。大明哥会持续更新 3+ 年,累计更新 1000+,宝典会不断迭代更新,保证最新、最全面。
  • 覆盖全面:本宝典累计更新 1000+,从 Java 入门到 Java 架构的高频面试题,实现 360° 全覆盖。
  • 不止面试:内容包含面试题解析、内容详解、知识扩展,它不仅仅只是一份面试题,更是一套完整的 Java 知识体系。
  • 宝典详情:https://www.yuque.com/chenssy/sike-java/xvlo920axlp7sf4k
  • 宝典总览:https://www.yuque.com/chenssy/sike-java/yogsehzntzgp4ly1
  • 宝典进展:https://www.yuque.com/chenssy/sike-java/en9ned7loo47z5aw

目前 Java 面试宝典累计更新 400+ 道,总字数 42w+。大明哥还在持续更新中,下图是大明哥在 2024-12 月份的更新情况:

想了解详情的小伙伴,扫描下面二维码加大明哥微信【daming091】咨询

同时,大明哥也整理一套目前市面最常见的热点面试题。微信搜[大明哥聊 Java]或扫描下方二维码关注大明哥的原创公众号[大明哥聊 Java] ,回复【面试题】 即可免费领取。

阅读全文