我们在上一章讲到了Elasticsearch在聚合分析中,可以使用“term”对指定field按照数量分组。本章,我们将介绍另一种区间分组的方式——histogram。
一、简介
1.1 histogram
histogram,它会接收一个field,然后按照这个field值的各个范围区间,进行bucket分组操作:
GET /tvs/_search
{
"size" : 0,
"aggs":{
"price":{
"histogram":{
"field": "price",
"interval": 2000
}
}
}
}
上述请求中,我们对“price”字段进行区间分组,区间间隔为2000,返回结果如下:
{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 8,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"price" : {
"buckets" : [
{
"key" : 0.0,
"doc_count" : 3
},
{
"key" : 2000.0,
"doc_count" : 4
},
{
"key" : 4000.0,
"doc_count" : 0
},
{
"key" : 6000.0,
"doc_count" : 0
},
{
"key" : 8000.0,
"doc_count" : 1
}
]
}
}
}
按照区间分组之后,我们就可以对各个bucket执行metric操作了,比如计算总和:
GET /tvs/_search
{
"size" : 0,
"aggs":{
"price":{
"histogram":{
"field": "price",
"interval": 2000
},
"aggs":{
"revenue": {
"sum": {
"field" : "price"
}
}
}
}
}
}
1.2 date_histogram
如果我们希望的按区间分组的字段是date类型的,那么需要用到date_histogram
关键字。比如:
GET /tvs/_search
{
"size" : 0,
"aggs": {
"sales": {
"date_histogram": {
"field": "sold_date",
"interval": "month",
"format": "yyyy-MM-dd",
"min_doc_count" : 0,
"extended_bounds" : {
"min" : "2016-01-01",
"max" : "2017-12-31"
}
}
}
}
}
解释下上述几个关键参数:
- min_doc_count:某个日期区间内的doc数量至少要等于这个参数,这个区间才会返回;
- extended_bounds:划分bucket的时候,会限定在这个起始日期和截止日期内。
二、实战
2.1 date_histogram
假设我们现在的需求是:统计每季度每个品牌的电视销售额,那么可以这样构造请求:
GET /tvs/_search
{
"size": 0,
"aggs": {
"group_by_sold_date": {
"date_histogram": {
"field": "sold_date",
"interval": "quarter",
"format": "yyyy-MM-dd",
"min_doc_count": 0,
"extended_bounds": {
"min": "2016-01-01",
"max": "2017-12-31"
}
},
"aggs": {
"total_sum_price": {
"sum": {
"field": "price"
}
},
"group_by_brand": {
"terms": {
"field": "brand"
},
"aggs": {
"sum_price": {
"sum": {
"field": "price"
}
}
}
}
}
}
}
}
上述请求其实就是先按日期进行分组,然后下钻到组内再按照品牌分组,最后对每个子组执行求和metric操作,结果如下:
{
"took" : 97,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 8,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"group_by_sold_date" : {
"buckets" : [
{
"key_as_string" : "2016-01-01",
"key" : 1451606400000,
"doc_count" : 0,
"total_sum_price" : {
"value" : 0.0
},
"group_by_brand" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [ ]
}
},
{
"key_as_string" : "2016-04-01",
"key" : 1459468800000,
"doc_count" : 1,
"total_sum_price" : {
"value" : 3000.0
},
"group_by_brand" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "小米",
"doc_count" : 1,
"sum_price" : {
"value" : 3000.0
}
}
]
}
},
{
"key_as_string" : "2016-07-01",
"key" : 1467331200000,
"doc_count" : 2,
"total_sum_price" : {
"value" : 2700.0
},
"group_by_brand" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "TCL",
"doc_count" : 2,
"sum_price" : {
"value" : 2700.0
}
}
]
}
},
{
"key_as_string" : "2016-10-01",
"key" : 1475280000000,
"doc_count" : 3,
"total_sum_price" : {
"value" : 5000.0
},
"group_by_brand" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "长虹",
"doc_count" : 3,
"sum_price" : {
"value" : 5000.0
}
}
]
}
},
{
"key_as_string" : "2017-01-01",
"key" : 1483228800000,
"doc_count" : 2,
"total_sum_price" : {
"value" : 10500.0
},
"group_by_brand" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "三星",
"doc_count" : 1,
"sum_price" : {
"value" : 8000.0
}
},
{
"key" : "小米",
"doc_count" : 1,
"sum_price" : {
"value" : 2500.0
}
}
]
}
},
{
"key_as_string" : "2017-04-01",
"key" : 1491004800000,
"doc_count" : 0,
"total_sum_price" : {
"value" : 0.0
},
"group_by_brand" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [ ]
}
},
{
"key_as_string" : "2017-07-01",
"key" : 1498867200000,
"doc_count" : 0,
"total_sum_price" : {
"value" : 0.0
},
"group_by_brand" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [ ]
}
},
{
"key_as_string" : "2017-10-01",
"key" : 1506816000000,
"doc_count" : 0,
"total_sum_price" : {
"value" : 0.0
},
"group_by_brand" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [ ]
}
}
]
}
}
}
三、总结
本章,我介绍了聚合分析中的区间分组,Elasticsearch采用histogram
关键字来完成对指定字段值的区间分组,如果我们想要分组的字段类型为日期,则需要使用date_histogram
关键字。
Java 面试宝典是大明哥全力打造的 Java 精品面试题,它是一份靠谱、强大、详细、经典的 Java 后端面试宝典。它不仅仅只是一道道面试题,而是一套完整的 Java 知识体系,一套你 Java 知识点的扫盲贴。
它的内容包括:
- 大厂真题:Java 面试宝典里面的题目都是最近几年的高频的大厂面试真题。
- 原创内容:Java 面试宝典内容全部都是大明哥原创,内容全面且通俗易懂,回答部分可以直接作为面试回答内容。
- 持续更新:一次购买,永久有效。大明哥会持续更新 3+ 年,累计更新 1000+,宝典会不断迭代更新,保证最新、最全面。
- 覆盖全面:本宝典累计更新 1000+,从 Java 入门到 Java 架构的高频面试题,实现 360° 全覆盖。
- 不止面试:内容包含面试题解析、内容详解、知识扩展,它不仅仅只是一份面试题,更是一套完整的 Java 知识体系。
- 宝典详情:https://www.yuque.com/chenssy/sike-java/xvlo920axlp7sf4k
- 宝典总览:https://www.yuque.com/chenssy/sike-java/yogsehzntzgp4ly1
- 宝典进展:https://www.yuque.com/chenssy/sike-java/en9ned7loo47z5aw
目前 Java 面试宝典累计更新 400+ 道,总字数 42w+。大明哥还在持续更新中,下图是大明哥在 2024-12 月份的更新情况:
想了解详情的小伙伴,扫描下面二维码加大明哥微信【daming091】咨询
同时,大明哥也整理一套目前市面最常见的热点面试题。微信搜[大明哥聊 Java]或扫描下方二维码关注大明哥的原创公众号[大明哥聊 Java] ,回复【面试题】 即可免费领取。